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Abstract
In this work a method for trajectory planning based on time-energy optimization of a nonholonomic wheeled mobile
robot is proposed. The method utilizes a nonlinear variable change that transforms the nonlinear optimization problem
into a discrete second order cone programming that can be solved by convex optimization tools. The formulation of the
multiobjective function has two components: the total energy and the traversal time that is weighted by a parameter named
penalty coefficient. With the use of the penalty coefficient one can establish a trade-off between the optimization of the total
energy and the traversal time. The relation between both objectives draws a Pareto Front in the criterion space parameterized
by the penalty coefficient. The rationale of this paper is to assume that the Pareto curve is an exponential function, and to
propose an algorithm to estimate its parameters. Using this exponential function it is possible to estimate the Knee Point that
is an optimal solution that balances time and energy equally. This systematic approach might be understood as a self-tuning
algorithm that estimate the penalty coefficient for the generation of optimal voltage signals. Numerical results illustrate the
feasibility of the proposed method.

Keywords Wheeled mobile robot · Trajectory planning · Time-energy optimization · Convex optimization ·
Pareto optimality

1 Introduction

Energy consumption of robots can oftentimes be minimized
during design stage by optimizing the energy efficiency
of robot motion systems, such as motors and drivers [1].
Significant results can be also achieved by efficient robot
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motion planning, which could save battery energy up to 40%
[2, 3]. This field of research has recently emerged as an
alternative way to improve the energy efficiency of robot
motion, and it has not been sufficiently explored.

The term trajectory planning is commonly used in the
robotics literature to address the problem of determining
both the geometric path and the velocity profile of the robot
motion. These problems can be solved concomitantly by
moving the problem to the configuration space augmented
with velocity coordinates. Even though this approach has
been proved to be complete [4], it may be computationally
impractical since the complexity of planning algorithms
usually scales exponentially with the dimension of search
space [5].

Therefore, most often the problem is decoupled in two
stages. In the first one, a high-level planner computes a
collision free geometric path in the robot environment,
taking into account task specifications [6]. Once the
geometric path is determined by the first stage, a low-level
planner defines in the second stage how the robot optimally
move along the geometric path based on some optimization
criteria while satisfying a set of constraints.
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Since the mid 80’s, the problem of finding a set of valid
velocity profiles along the geometric path that stay below
maximum values is solved via a re-parameterization of the path
by a single variable that represents its normalized length.

Bobrow, Dubowsky and Gibson [7] have presented
an algorithm for computing actuator torques that move
a manipulator along a predetermined geometric path in
minimum time subject to torque constraints. They propose
that time-optimal solution is estimated by choosing the
velocity profiles as large as possible respecting constraints
and controlling via switching curves like bang-bang control.

Pfeiffer and Johanni [8] have proposed to obtain the exact
minimum time solution using the geometric properties of a
transformed set of dynamic equations. Using Pontryagin’s
maximum principle optimal smooth velocity profiles can be
found using shooting methods [9] or the phase plane method
used together with imposed constraints on torque variations
[10].

Although the aforementioned approaches have presented
important results for the research area their nonconvex for-
mulation do not guarantee the global optimality. Verscheure
et al. [11] (see also [12]) present an important transforma-
tion that allow to solve the minimum time and/or energy
problem of a six degree of freedom robotic manipulator
motion along a predefined geometric path using convex
optimization tools [13]. Some examples of this approach can
be found in the robotics literature [14–16].

Lipp and Boyd [17] uses the Verscheure et al. approach
in order to optimize the traversal time of a wide range
of vehicles over a fixed geometric path, such as space
vehicles, car models and aircrafts. However, underactuated
robots had not been considered. Recently, Reynoso-Mora
et al. [18] have reformulated the nonlinear dynamic model,
considering both Couloumb and viscous frictions. However,
this formulation requires a convex relaxation that could not
be theoretically proved. Via experimental results authors
claim that have not found any counterexample.

Since nonholonomic systems are characterized by
kinematic constraints that are not integrable and eliminated
from model equations, they bring an extra challenge to the
trajectory planning [19]. Serralheiro and Maruyama [20]
present a change of variable technique that allows the use
of the Verscheure et al. approach in order to optimize the
motion of a class of nonholonomic wheeled mobile robots.

The first objective of this work is to present a time-energy
optimization for the trajectory planning of a nonholonomic
wheeled mobile robot (WMR) model over a fixed geometric
path. To this aim, Section 2 presents an alternative
generalized coordinate system that is used to reduce the
dynamic equations by considering that the fixed geometric
path that the robot must traverse is itself a constraint.
The minimal time-energy problem is transformed into a

discrete Second Order Cone Programming (SOCP) that can
be solved by convex optimization tools.

In Section 3 experimental results shows that the
formulation gives rise to a Pareto optimality condition from
which is not possible to diminish the traversal time without
increasing the total energy and vice versa. Experimentally
it is shown that this relation between the traversal time and
total energy might be described by an exponential function.
A particular optimal solution is the Knee Point of this
function where time and energy are balanced equally.

A self tunning algorithm is presented in Section 4 that can
estimate the Knee Point. Simulation results are discussed in
Section 5. Finally in Section 6 some conclusions are drawn
about the proposed method.

2 Time-Energy Optimization of aWMR

2.1 Robot Kinematic Model

A differential wheeled mobile robot (WMR) is a chassis
with two parallel driven wheels with radii r . The distance
between wheels is given by l. Consider the position p ∈
R

2, p = [ x y ]T , the vector representing the cartesian
coordinates of the midpoint P between the wheels, and the
classical pose [19] given by ξ = [p θ ]T = [ x y θ ]T ,
where θ ∈ [0, 2π) is the robot orientation. Also consider
the path � a C2 class curve in the configuration space where
the robot must traverse.

Lemma 1 If the robot linear velocity is non-negative, a path
� described by the robot positions p(t) = [ x(t) y(t) ]T
also defines the robot poses ξ(t) = [ x(t) y(t) θ(t) ]T in
the configuration space.

Proof Since the path is a C2 class curve, the continuous
derivative ṗ(t) = [ ẋ(t) ẏ(t) ]T exists. The heading angle
given by

θ(t) = tan−1
(

ẏ(t)

ẋ(t)

)
(1)

is a continuous function of θ : [0, Tf ] → [0, 2π).

Moreover, consider the monotonically increasing func-
tion γ : R → R defined as

γ (t) =
∫ t

0
v(ι) dι =

∫ t

0

√
ẋ2(ι) + ẏ2(ι) dι, (2)

witch represents the distance traversed by the robot along
the path �.

Lemma 2 If the robot linear velocity is non-negative, a path
� described by the robot positions p(t) = [ x(t) y(t) ]T can
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be equivalent defined by the function q(t) : [0, Tf ] → R
2,

q(t) = [ γ (t) θ(t) ]T , if the initial position p0 = [ x0 y0 ]T
is known.

Proof Since the path is a C2 class curve, the function
γ (t) = γ (p(t)) defined in Eq. 2 exists as a continuous
function. By the Lemma 1, θ(t) = θ(p(t)). Hence, q(t) =
q(p(t)). Moreover, the robot positions can be given by the
integrals

x(t) = x0 +
∫ t

0
γ (ι) cos θ(ι) dι,

y(t) = y0 +
∫ t

0
γ (ι) sin θ(ι) dι. (3)

Then, q(t) = q(p(t)) and p(t) = p(q(t)).

This formulation provides the dimension reduction of the
robot coordinates as the following:

Theorem 1 The function q(t) : [0, Tf ] → R
2,

q(t) = [ γ (t) θ(t) ]T , (4)

can define a path � in the generalized coordinates way, if
the initial position p0 = [ x0 y0 ]T is known.

Proof By the Lemma 1, the functions x(t) and y(t) also
define the heading angle θ(t) in a C2 class curve; since the
� curve can be represented by both distance and heading
angle function (Lemma 2)

2.2 Robot Dynamic Model

The robot input voltage signals u ∈ R
2, u = [ ur ul ]T

impose torque to the wheels. Given the mass m and the
moment of inertia J of the robot structure, consider the
simplified robot dynamics written as:

Ru = Mq̈, (5)

with matrices defined by:

R =
⎡
⎣

Km

r
Km

r

Kml
2r

−Kml
2r

⎤
⎦ , (6)

M =
[

m 0
0 J

]
, (7)

where Km is the motor torque constant, and q̈ ∈ R
2, q̈ =

[ γ̈ θ̈ ]T is the acceleration vector.

2.3 Problem statement

Consider a given path � defined mathematically as a
function s : [0, 1] → R

2 such that,

q(t) = s(τ (t)), t ∈ [0, Tf ], (8)

Fig. 1 The WMR and its coordinates in two different representations,
traversing a predefined geometric path � parameterized by τ

where the robot must traverse a geometric path as illustrated
in Fig. 1. The monotonically increasing function τ :
[0, Tf ] → [0, 1] maps the robot motion time in a
normalized interval where τ(0) = 0 e τ(Tf ) = 1.

The derivatives of Eq. 8 are the robot velocity and
acceleration in the configuration space [7]:

q̇(t) = s′(τ )τ̇ (t), (9)

q̈(t) = s′(τ )τ̈ (t) + s′′(τ )τ̇ 2(t), (10)

where (.)′ refers to the derivatives with respect to τ .
We want to find a velocity profile q̇(t), t ∈ [0, Tf ],

such that the robot is driven through a geometric path s

in minimum traversal time Tf and energy consumption Et .
This problem might be defined as an optimization problem
that is described as:

Problem 1 (Minimal time-energy problem)

min.
(u,τ )

: J (t, u) =
∫ Tf

0
‖u(t)‖2

2 dt + μ

∫ Tf

0
dt, (11)

s.t. : Ru(t) = Mq̈(t), (12)

q(t) = s(τ (t)), (13)

umin ≤ u(t) ≤ umax, (14)

q̇min ≤ q̇(t) ≤ q̇max, (15)

q̈min ≤ q̈(t) ≤ q̈max, t ∈ [0, Tf ], (16)

where μ ∈ R, named penalty coefficient, controls the
trade-off between time and energy in the objective function.
The constants (umin, umax) ∈ R

2 are the motors input
voltage limits, and the pairs (q̇min, q̇max), (q̇min, q̇max) ∈
R

2 are the limits of the robot velocity and acceleration in
the geometric path respectively.

2.4 Convexification

By using Eq. 10 in Eq. 5, that defines the WMR dynamics,
yields [11, 17]:

Ru(τ) = M
(
s ′(τ )τ̈ (t) + s′′(τ )τ̇ 2(t)

)
. (17)
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Two auxiliary functions are introduced, a(τ) = τ̈ and
b(τ) = τ̇ 2 which results in the relation b′(τ ) = 2a(τ). The
objective function given by Eq. 11 can be redefined as,

J (τ, u) = ∫ τ(Tf )

τ (0) [‖u(τ)‖2
2 + μ] dτ

τ̇

= ∫ 1
0

[‖u(τ)‖2
2+μ]√

b(τ)
dτ, (18)

and the nonlinear Problem 1 becomes equivalent to the
following problem:

Problem 2 (Minimal time-energy convex problem)

min.
(u,a,b)

: J (τ, u) =
∫ 1

0

[‖u(τ)‖2
2 + μ]√

b(τ)
dτ, (19)

s.t. : Ru(τ) = M
(
s′(τ )a(τ ) + s′′(τ )b(τ )

)
, (20)

b′(τ ) = 2a(τ), (21)

(u(τ), a(τ ), b(τ )) ∈ Cτ , τ ∈ [0, 1], (22)

where:

Cτ = {(u(τ), a(τ ), b(τ ))|
(u(τ), s′2(τ )b(τ ), s′(τ )a(τ ) + s′′(τ )b(τ )) ∈ Ct }.

2.5 Convexity Analisys

Since the set Cτ is convex and the equality constraints (20) and
(21) are affine and linear respectively, the convexity analisys
focused on the objective function. Let review the condition:

Theorem 2 (Second-order condition) The function f is con-
vex if and only if domf is convex and its Hessian is positive
semidefinite, i.e., for all x ∈ domf , ∇2f (x) 	 0. [13]

The Eq. 19 can be written as:

J =
∫ 1

0
F1 dτ + μ

∫ 1

0
F2 dτ (23)

where F1 = b− 1
2 ‖u‖2

2 = b− 1
2 uT u, F2 = b− 1

2 , b = b(τ),
u = u(τ). The function F2 in on the form xa , a ≤ 0, hence
convex in R++. [13]

Lemma 3 F1 : R+ × R → R, F1 = b− 1
2 ‖u‖2

2 is convex in
its domain.

Proof Such u = u(τ) = [ur(τ ) ul(τ )]T , consider the
notation:
d

dτ

(
u(τ)T u(τ)

)
= 2(ur(τ ) + ul(τ )) = 2‖u(τ)‖1. (24)

Hence, the Hessian is given by:

H = ∇2F1(b, u) =
[

3
4b− 5

2 ‖u‖2
2 −b− 3

2 ‖u‖1

−b− 3
2 ‖u‖1 2b− 1

2

]
. (25)

Let λ1 and λ2 be the eigenvalues of H . Such det (H) =
λ1λ2, det (H) ≥ 0 implies that all H eigevalues are non-
negative. On the other hand, if det (H) is non-negative, than
(i) both eigenvalues are positive or (ii) both eigenvalues are
negative. Such trace(H) = λ1 + λ2, if det (H) ≥ 0 and
trace(H) ≥ 0, then the eigenvalues are non-negative.

Whereby b ∈ R+, ‖u‖1 ∈ �, hence:

det (H) = ‖u‖2
2

2b3
≥ 0,

trace(H) = 3

4
b− 5

2 ‖u‖2
2 + 2b− 1

2 ≥ 0,

then H = ∇2F1(b, u) 	 0 which implies F1 = b− 1
2 ‖u‖2

2 is
convex on its domain.

The Problem 2 is a convex optimization problem, since the
objective function (19) is convex, the equality constraints (20)
and (21) are afine function of the optimization variables, and
Cτ is a convex set [13].

2.6 Problem Discretization

Following the approach proposed by Verscheure et al. [11],
the time parameter τ is discretized into N + 1 points.

Problem 3 (Discrete minimum time-energy convex problem)

min.
(ui ,ai ,bi )

: J (τ, u) =
N∑

i=1

2(‖ui‖2
2 + μ)(√

bi + √
bi−1

) (δτi), (26)

s.t. : Rui = M
[
s̄′
iai + s̄′′

i

2
bi + s̄′′

i

2
bi−1

]
, (27)

bi − bi−1 = 2ai(δτi), (28)

(ui, ai, bi) ∈ Cτ̄ , i = 1, . . . , N, (29)

where:

Cτ̄ = {(ui, ai, bi)|
(u(τ̄ ), s′2(τ̄ )b(τ̄ ), s′(τ̄ )a(τ̄ ) + s′′(τ̄ )b(τ̄ )) ∈ Ct },

and δτi = τi − τi−1.

2.7 Formulation as SOCP

Though the Problem 3 is a discrete convex optimization
problem, the objective function in Eq. 26 is nonlinear.
Therefore, four new scalar variables ci, di, ei , fi ∈ R+ are
introduced in Problem 3 in order to redefine the objective
function as:

J̃ (τ, u) =
N∑

i=1

2(ei + μfi)δτi ≥

≥
N∑

i=1

2(‖ui‖2
2 + μ)(√

bi + √
bi−1

) (δτi) = J (τ, u), (30)
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where the inequality relations:

1

di

≤ fi, (31)

uT
i ui

di

≤ ei, (32)

di ≤ ci + ci−1, (33)

ci ≤ √
bi, (34)

can be considered as constraints which minimize the
objective function, i.e., J̃ ≥ J is an upper constraint
bound of J , it means that minimizing J̃ ensures that
J is minimal. Moreover, J̃ is a linear function of the
new optimization variables. Transforming the hyperbolic
inequalities constraints (31), (32) and (34) into second order
constraints [21], the Problem 3 becomes equivalent to:

Problem 4 (Discrete Minimal Time-Energy Convex Prob-
lem as a SOCP)

min
(

ui
ai ,··· ,fi

)
: J (τ, u) =

N∑
i=1

2(ei + μfi)δτi, (35)

s.t. :
∥∥∥∥
[

2
di − fi

]∥∥∥∥
2

≤ di + fi, (36)

∥∥∥∥
[

2ui

ei − di

]∥∥∥∥
2

≤ ei + di, (37)

∥∥∥∥
[

2ci

bi − 1

]∥∥∥∥
2

≤ bi + 1, (38)

di ≤ ci + ci−1, (39)

Rui = M
[
s̄′
iai + s̄′′

i

2
bi + s̄′′

i

2
bi−1

]
, (40)

bi − bi−1 = 2ai(δτi), (41)

(ui, ai, bi) ∈ Cτ̄ , i = 1, . . . , N . (42)

Solving the Problem 4, the optimal input signal u∗
i and

the optimal auxiliary variables (a∗, · · · , f ∗) are found.
Thereby, the time t can be re-parameterized by the rate:

δti = δτi/
√

b∗(τi), as well as the traversal time and the total
energy consumption are calculated by the sums

Tf =
N∑
1

δτi√
b∗
i

, (43)

Et =
N∑
1

‖u∗
i ‖2

2. (44)

3 Experimental Pareto Front

A wheeled mobile robot is considered with the following
characteristics: width B = 0.4m, inertial mass m = 10kg,
moment of inertia J = 2.833Kg/m2, wheel radius r =

0.1m, motor torque constant Km = 65 · 10−3Nm/V ,
nominal input voltage umax = −umin = 12V .

For instance, the WMR is supposed to traverse the
arbitrary geometric path � built as a spline with a smoothing
parameter value � = 0.99 to reach the following waypoints:
p0 = [ 0 0 ]T , wp1 = [ 2 −1 ]T , wp2 = [ 3 −1 ]T , wp3 =
[ 6 −1 ]T , wp4 = [ 8 −1 ]T and wp5 = [ 5 −1 ]T .

The spline is then divided into N = 500 segments of
equal length, resulting in N + 1 discrete points p0, . . . , pN .
as illustrated in Fig. 2.

The robot motion has constraints on maximum velocity
q̇max = [ 2.5m/s 1rad/s ]T and maximum acceleration
q̈max = [ 2m/s2 .5rad/s2 ]T . Furthermore b0 = b(τ0) = 0.
No final velocity constraint is imposed.

The optimization variables are the left and right motors
input voltage ui = [ uri uli ]T , auxiliary variables ai and bi ,
and also auxiliary variables ci , di , ei and fi , i = 1, . . . , N

that are defined by Eqs. 31, 32, 33 and 34. A desktop
computer equipped with a 3.60Ghz clock Intel Core i7-
4790, 8GB of RAM running Windows 8 x64 is utilized.
All numerical calculations are performed by the MATLAB
R2017a.

Optimization trials of the Problem 4 have been performed
while varying the penalty coefficient μ, using the Mosek
algorithm of the MATLAB CVX toolbox [22].

When the penalty coefficient μ decreases towards zero,
μ → 0, the optimization algorithm gradually diminishes
the importance of the traversal time Tf while increasing the
importance of the total energy Et . As a consequence, the
robot velocity diminishes thus increasing the traversal time
Tf . The extreme situation of μ = 0 ,i.e., only optimization
of the total energy Et is of concern, the traversal time is
equivalent to Tf = 1218s while consuming Et = 1.4mJ .

-1 0 1 2 3 4 5 6 7 8 9

-3

-2

-1

0

1

2

3

4

5

Fig. 2 Arbitrary geometric path � in the Cartesian plane. The black
squared mark represents the initial point p0 and the blue dots are the
discrete points pi , i = 1, . . . , N
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On the contrary, if only the optimization of the traversal
time Tf is important than one can set a very large penalty
coefficient μ → ∞. In this case, the traversal time is
Tf = 12.8s and the energy effort is Et = 1704J .

Figure 3 illustrates a series of optimal input voltage
signals (a) u∗

r and (b) u∗
l and the optimal velocity profile (c)

v∗ while varying the penalty coefficient μ.
The arrows indicates that the higher the value of the penalty

coefficient μ, the greater the effort of the motor; conse-
quently, the greater the linear velocity over the geometric
path. it is possible to note saturation on input signals (e.g. on
u∗

r at i = 250 and on u∗
l at i = 120) and the linear velocity

saturation vmax = 2.5m/s on the interval [285 ≤ i ≤ 332].
In general, there are infinite possible input voltage

profiles that can drive the robot through the geometric path
�, each one associated with a different final time Tf and
total energy Et .

Graphically in the criterion space Tf × Et , the set of all
feasible points reveals an area named “Feasible Space” (See

Fig. 4). This area is bounded by the set of the optimization
results.

An optimal solution is also a Pareto optimal if there is
no other solution in the feasible space that reduces at least
one objective function without increasing another one [23].
Therefore, in our case, the set of optimal solution is also a
Pareto optimal.

Since the trajectory optimization criteria have different
quantities (the final time Tf in seconds and the total energy
Et in squared Volts), a normalization parameter becomes
necessary. This parameter can be defined as

� = 
Et


Tf

, (45)

which gives a “cost ratio”, in J/s.
The optimal solution in the solution set, the Knee Point

(T ∗
f , E∗

t ) is given by:

dEt (Tf )

dTf

(T ∗
f ) = −�, (46)

Fig. 3 Optimal signals at
discrete points i. The arrows
indicate signal trend with the
increase of penalty parameter μ
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Fig. 4 Criterion space Tf × Et

with the Utopia and Knee points
and the Pareto Front
parameterized by the penalty
coefficient μ. The dotted lines
represent the Pareto Front
asymptotes and the dashed line
represents a −45o sloped tangent
line through the Knee Point

0 10 20 30 40 50 60

-200

0

200

400

600

800

1000

1200

1400

1600

Feasible Space

Utopia Point

  Knee Point

Pareto

Front

i.e., the tangent line to the curve on that point in a
normalized graph has a slope of −45o.

3.1 Logarithmic graphs

Experimentally it is possible to note that both the Pareto
front graph, Fig. 4, and the Tf × μ graph present sections
that are linear. These linear sections correspond to regions
that are saturation free when plotted in log-log scale as
illustrated in Fig. 5. Under these assumptions, it is possible
to arguably claim that these functions have an exponential
form for some interval values of μ.

a

b

Fig. 5 Log-log graphs

4 Self Tuning Algorithm

Suppose that the relationship between the final time Tf and
the total energy Et of the robot in the traversal task is given
by the following function:

Et(Tf ) = β · Tf
α, (47)

where α, β ∈ R are scalar constants, independent from
Et and Tf . Applying the logarithmic function in Eq. 47 it
becomes:

Êt (T̂f ) = β̂ + α · T̂f , (48)

where ˆ(·) = log10(·).
This is an affine function where α is the angular

coefficient and β̂ is the linear coefficient.
Hence, given two different optimization estimates

(Tf 1, Et1) e (Tf 2, Et2), the α and β coefficients can be
calculated by the following equations:

α = Êt2 − Êt1

T̂f 2 − T̂f 1
, (49)

β = 10(Êt1−αT̂f 1) = 10(Êt2−αT̂f 2). (50)

The derivative of Eq. 47 is given by:

dEt (Tf )

dTf

= αβ · Tf
(α−1), (51)

such that the tangent line through the Knee Point (T ∗
f , E∗

t )
has a slope given by the normalization coefficient, Eq. 46,
i.e,

αβ · T ∗
f

(α−1) = −�. (52)

Therefore, the Knee Point coordinates is given by:

T ∗
f =

(
− �

αβ

) 1
(α−1)

, (53)

E∗
t = β · (T ∗

f )α . (54)
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Table 1 Estimated coefficients
α, β, ν and κ for some values
of μ

μ̂ Tf 2 Et2 −α β −ν κ

[s] [J ] [×106] [×106]

−3 295.46 0.0969 2.9998 2.4979 4.0343 9.2651

−2 166.11 0.5456 2.9999 2.4996 4.0162 8.2725

−1 93.428 3.0662 2.9999 2.4999 4.0112 8.0173

0 52.541 17.241 3.0000 2.5001 4.0085 7.8806

1 29.546 96.949 3.0000 2.5001 4.0068 7.7972

2 16.685 539.17 3.0004 2.5077 4.0106 7.9849

3 13.057 1390.3 3.0578 3.5901 4.3681 7.4839

4 12.910 1674.0 3.0986 4.6356 4.9768 3.3804

Likewise, it is assumed that the relationship between the
final time Tf and the penalty coefficient μ is a function
μ = f (Tf ) : R → R given by:

μ(Tf ) = κ · Tf
ν, (55)

where ν, κ ∈ R. Applying the logarithmic function
on Eq. 55 it becomes:

μ̂(T̂f ) = κ̂ + ν · T̂f , (56)

that is an affine function relating T̂f to μ̂.
With two optimization points (Tf 1, μ1) and (Tf 2, μ2),

the coefficients ν e κ might be estimated using the following
equations:

ν = μ̂2 − μ̂1

T̂f 2 − T̂f 1
, (57)

κ = 10(μ̂1−νT̂f 1) = 10(μ̂2−νT̂f 2). (58)

The complete estimation process is given by Algorithm 1.

5 Results and Discussions

In order to validate the assumption that the relationship
between the final time Tf and the total energy Et is given

Algorithm 1 Estimation of optimal penalty coefficient
μ∗
Data: N , �, R, M , Cτ

Input: �, μ1, μ2

Output: μ∗
1 (Tf 1, Et1) ← SOCP(μ1, R, M, s̄′

i , s̄
′′
i , Cτ );

2 (Tf 2, Et2) ← SOCP(μ2, R, M, s̄′
i , s̄

′′
i , Cτ );

3 α ← (Êt2 − Êt1)/(T̂f 2 − T̂f 1) ; // eq. 49

4 β ← 10(Êt1−αT̂f 1) ; // eq. 50

5 T ∗
f ← (−�/αβ)(1/(α−1)) ; // eq. 53

6 E∗
t ← β(T ∗

f )α ; // eq. 54

7 ν ← (μ̂2 − μ̂1)/(T̂f 2 − T̂f 1) ; // eq. 57

8 κ ← 10(−νT̂f 1) ; // eq. 58
9 μ∗ ← κ(T ∗

f )ν ; // eq. 55

by an exponential function, numerical results using Algo-
rithm 1 are obtained. For the penalty coefficient value μ1 =
10−4 the optimization algorithm provides the following
solution estimate (Tf 1, Et1) = (522.85s, 0.0175J ). More-
over for each μi , i = −3, . . . , 4, the algorithm provides
a second solution estimate (Tf 2, Et2), consequently, the α,
β, μ and κ coefficients can be estimated respectively using

Table 2 A comparison
between indirect and direct
estimation of optimum values

Algorithm SOCP Error

� T ∗
f [s] E∗

t [J ] μ∗ T ∗
f r [s] E∗

tr [J ] ε[%]

1 52.34 17.44 1.016 52.33 17.45 0.0075

2 44.01 29.34 2.035 44.00 29.38 0.0747

5 35.00 58.33 5.097 34.97 58.48 0.1705

10 29.43 98.10 10.21 29.40 98.46 0.2455

20 24.75 165.0 20.45 24.71 165.8 0.3172

50 19.68 328.0 51.22 19.64 330.1 0.4171

100 16.54 551.7 102.6 16.59 549.1 0.3436

200 13.92 927.8 205.5 14.50 844.0 6.9550

500 11.07 1844.6 514.7 13.36 1182.0 36.5966
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Fig. 6 Criterion spaces Tf × Et in some tunning of μ as function of �. The red cross indicates the Knee Point (T ∗
f , E∗

t ) calculated by the
Algorithm I and the dashed red line represents the tangent of the Pareto Front at the Knee Point, with a slope of −�

Eqs. 49, 50, 57 and 58. The results of these estimations are
illustrated in Table 1.

One can note that there is a linearity in the data especially
around μ = 10−1 and μ = 101. Therefore, the value
μ2 = 100 might be arguably used as the second penalty
coefficient value for the algorithm.

In order to check our method a two part series of
numerical computations are executed. In the first part,
where results are named indirect estimation of optimum
values, the Algorithm 1 is performed under the assumption

that penalty coefficient values μ1 = 10−4 and μ2 = 100

are sufficient to estimate the parameters of the exponential
functions Et(Tf ) and μ(Tf ), respectively (47) and (55).

The following interval range of � =
[1, 2, 5, 10, 20, 50, 100, 200] is considered. The algorithm
estimates the optimal solution (T ∗

f , E∗
t ) as the estimated

optimal point and the associated penalty coefficient μ∗.
These results are illustrated in the left part of Table 2.

In the second part, where results are named direct
estimation of optimum values, the SOCP (Problem 4)
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Fig. 7 Optimum signals from
SOCP for μ∗ = 51.22
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optimization algorithm is executed for each value of �

with the associated optimal penalty coefficient μ∗ estimated
in the first part. The algorithm estimates optimal points
(T ∗

f r , E
∗
tr ) that are illustrated in the right part of the Table 2.

In the right part of the Table 2 the mean relative errors
of indirect and direct estimation of optimum values are
calculated for each � as follows:

ε = |T ∗
f r − T ∗

f |/T ∗
f r + |E∗

tr − E∗
t |/E∗

tr

2
× 100. (59)

Graphical results are illustrated in Fig. 6. It is possible
to note that on case (h), where � = 200 the estimated
optimal point is almost close to the edge of saturation. Since
the mean relative error is greater than 1%, normalization
coefficient values � � 100 should be avoided.

The generation of voltage signals profiles are the final
goal of the optimization algorithm. Fig. 7 illustrates (a)
optimal voltage signals u∗(t) = [ u∗

r (t) u∗
l (t) ]T that drives

the robot along the geometric path � (See Fig. 2) and (b)
optimal velocity profile v∗(t), for a normalized coefficient
value � = 50 (penalty coefficient μ∗ = 51.22).

6 Conclusions

A method for trajectory planning based on time-energy
optimization of a nonholonomic wheeled mobile robot
has been proposed. A nonlinear variable change allows
the transformation of a nonlinear optimization problem
into a discrete second order cone programming that can
be solved by convex optimization tools. An alternative

generalized coordinate system is used by considering that
the predetermined geometric path is a constraint.

The convex optimization algorithm estimates a solution
(Tf , Et ) which is a function of the penalty coefficient μ.
The function is drawn as a curve in the criterion space
Tf × Et parameterized by the penalty coefficient μ. The
curve might also be interpreted as a Pareto Front. There is
a special interest in estimating the Knee Point that is an
optimal solution that balances equally the traversal time and
total energy.

The main rationale of this work hypothesize that both
functions Ef (Tf ) and Tf (μ) are exponentially shaped.
When Estimating two solutions of the curve (Tf , Et ) it
is possible to estimate the parameters of the exponential
functions and infer the value of the optimal penalty
coefficient μ∗ which is associated to the Knee Point.

Using the value of μ∗ it is possible to estimate the
optimal solution (T ∗

f , E∗
t ) and consequently the associated

optimal voltage signals u∗(t) = [ u∗
r (t) u∗

l (t) ]T .
Using numerical results, optimal values (T ∗

f , E∗
t ) are

estimated using two different methods: indirect and direct
estimation. The obtained small mean relative errors that
is used to compare both estimations demonstrates the
feasibility of the method.

This systematic approach might be understood as a self-
tuning algorithm that estimate the penalty coefficient for the
generation of optimal voltage signals.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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